PAUL SCHERRER INSTITUT

Anna Bergamaschi :: Photon Science Detector Group :: Paul Scherrer Institut

Position sensitive detectors for soft X-rays

Smart-X Symposium :: Trieste :: 7th April 2022

Paul Scherrer Institut

•Federal large scale research facilities

- Proton
 accelerator
- Muon accelerator
- Neutron source
- Swiss Light Source
- SwissFEL

The Photon Science Detector group

Synchrotron experiments

Storage ring Bending magnets Insertion devices

Beamline Monochromator Mirrors Preparation Enviroment Methods

Position sensitive Energy dispersive

SCIENCE

•The choice of the detector plays an important role for the success of your experiment

•Choose it wisely

•Use it properly

PAUL SCHERRER INSTITUT

Visibility → •Efficiency → •Noise

Intensity Dynamic range

Position => •Segmentation

The Detective Quantum Efficiency describes how well the detector makes use of photons

- Proportional to the sensor
 Quantum Efficiency
- Optimally Poisson limited on the whole dynamic range
 - Photon counting performance
- Can be plotted as a function of energy, frequency, dynamic range...
- Very difficult to compare between detectors!

- Shallow absorption
 - Poor quantum efficiency

- Small signal per photon
 - In silicon 3.6 eV / e-h pair
 - 1 keV γ generates ca. 280 e-h pairs
 - 200 eV generates < 60 e-h pairs
 - Low noise required to have single photon resolution
 - @1 keV σ_{noise} <60e- for SNR=5
 - @ 200 eV $\sigma_{\text{noise}}{\approx}10\text{e-}$ for SNR=5

Front vs. back illumination

- Frontside illumination
 - Photons need to be transmitted through metal, implant, passivation
 - Fill factor < 100% for CMOS
 - -Impossible for hybrid detectors
- Backside illumination
 - Full wafer depletion or back thinning
 - -Low electric field region
 - Special processing to reduce charge recombination
 - Backplane needed to bias the sensor
 - Schottky implant, metallization

O Metallization for light shielding?

Photons are like chocolates...

Chocolate counting

Chocolate integrating

A. Bergamaschi, Smart-X 2022

Read Out modes at continuous sources

High and low flux on the detector

- Large dynamic range
- **Background rejection**
- Minimum detectable energy
- Pile-up at high fluxes
- No flux limitation
- Multiple low energy photons detectable
- Limited dynamic range
- Needs fast readout
- No flux limitation
- Multiple low energy photons detectable
- Large dynamic range
- Challenging calibration X

Read Out modes at pulsed sources

Spatial resolution is not pixel size!

- The spatial resolution is well described by the Point Spread Function
- Mainly depends on:
 - Pixel size
 - Photon conversion process
 - Charge collection speed
- Sub-pixel resolution can be obtained by interpolating the position "photon by photon"

Time resolution

- Time resolution of the detector:
 - Frame rate
 - Response speed (charge collection time)
- At pulsed sources the time resolution is defined by the beam
 - -Single shot measurements
 - Detector frame rate > beam rep rate
 - Low statistics, readout noise?
 - Stroboscopic measurements
 - Reproducibility
 - Time jitter

	CCD	CMOS	Hybrid
Quantum efficiency			
Single photon sensitivity			
Dynamic range	(\odot
Spatial resolution	\odot	\odot	
Frame rate	\bigotimes		\odot
Area coverage			\odot
Radiation hardness	\bigotimes		\odot

Charge Coupled Device

- in 1969 by W.Boyle and E.Smith whom got a Nobel prize for it
- Collects photo-generated charges (electrons) under a bias electrode known as photo-gate
- The charge is shifted towards the readout by shifting the voltage on the electrodes
 - Requires a shutter!
 - Very low capacitance (and low noise!)
 - Readout noise (speed dependent)
 - -Slow readout
 - Multi-port CCDs

Stat-of-the-art commercial CCD

www.greateyes.de

pnCCD: the CAMP chamber

Quantum efficiency	>80% range 0.3-12 keV
Pixel size	75 x 75 μm²
System size	2048x2048 pixels 15.3 x 15.3 cm ²
Dynamic range	5x10 ⁵ e-/pixel 10 ³ @2keV, 166@12keV
Energy range	0.05-25 keV
Energy resolution	2 e- (7.2 eV) high gain 20 e- (72 eV) low gain
Framing rate	200 Hz
External trigger/gate	5 V TTL

L. Strüder et al.,NIM A, 614(3), 2010, 483–496. doi:10.1016/j.nima.2009.12.053. HN Chapman *et al. Nature* **470**, 73-77 (2011) doi:10.1038/nature09750

Electron Multiplying CCD

Detector type	EM-CCD
Area	40 mm x 40 mm
CCD pixel size	13um x 13um
Number of pixels	1024 x 1024
Readout noise	<1 e-
Full well capacitance	80 ke-
Cooling type	Thermo-electric Cooler or Peltier

Tutt et al., (2014). Electronics Letters, 50(17), pp. 1224–1226 Tutt et al., (2012) IEEE Trans. Electr. Dev., 59(1), pp. 167-175

CCD Soft X-ray interpolation

Signal electrons are spread in a 2D Gaussian-like distribution that is sampled by the pixels.

X-ray interaction forms an electron cloud that diffuses until being attracted into the potential wells

Soft X-ray is incident on 'back surface' of Back Illuminated device

• Possible to improve spatial resolution

to around $2 \mu m$ by centroidng

220 QQ 200 180 160 140 120

> Single X-ray photon events with their total signal spread over multiple neighbouring pixels

 single photon events
 Hall et al., Jour. Inst. 7, C01063 (2012) DOI: 10.1088/1748-0221/7/01/C01063

 Soman et al., Nucl. Instr. Meth Phys. Res. A 731, 47-52 (2013). DOI: 10.1016/j.nima.2013.04.076

 Soman et al., Jour. Inst. 8, C01046 (2013). DOI: 10.1088/1748-0221/8/01/C01046

- Invented around 1968 by P. Noble
 - Based on active pixels (CMOS transistors)
- Large fraction of the pixel is (was) occupied by the transistors

 Low fill-factor in front illumination
- Fully depleted CMOS imagers are emerging for hard X-rays
 - For soft X-rays usually back-thinning
- In principle full wafer imagers possible (but low yield forback-thinning)
- Each pixel can be addressed separately (ROI, high speed)
- Global or rolling shutter possible

State-of-the-art commercial CMOS

Table 1

Electro-optical characteristics of the GSENSE400BSI sensor specifications and TUCSEN Dh

	Symbol	Value
Gain	K	LG, HG or HDR mode
Frame rate	frames s ⁻¹	24 Hz full frame (HDR), 48 Hz full frame (LG or HG)
Readout architecture		Rolling shutter
Pixel size	pixel	11 μm × 11 μm
Sensor size	84	4 Mpixel, 2048 × 2048 pixels (22.5 mm × 22.5 mm)
Exposure time	t	20 µs-10 s
Binning		No
Readout noise	o'read	<2 e ⁻ r.m.s (HDR and HG) and <45 e ⁻ r.m.s. (LG)
Dark current	14 dark	$\sim 3 e^{-} s^{-1} pixel^{-1} (-20^{\circ}C)$
Full well capacity	FWC	30 ke ⁻ (HDR), 1700 e ⁻ (HG) and >80 ke ⁻ (LG)
Spatial pixel offset noise	DSNU	<5 e ⁻
Spatial pixel gain noise	PRNU	<1%

Compromise between noise and maximum intensity

Desjardins et al. Volume 27 | Part 6 | Novemeber 2020 | Pages 1577–1589 | 10.11107/S160057752001262X

Table 1

PERCIVAL: CMOS imager for XFELs

Pixel array	2089 472 pixels (+ references), 27 µm pitch	
Frame rate	Tested: up to 83.3 frame s ⁻¹	
	(design goal: >120 frame ⁻¹ s ⁻¹)	
e/ADU	Very high gain: 2.1 e/ADU	a) adaptive gain operation (Lateral Overflow) b) adaptive gain operation (Lateral Overflow)
	High gain: 12.6 e/ADU	high-gain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Medium gain: 106.0 e/ADU	3000 bindum gain o bindum gain
	Low gain: 944.2 e/ADU	B 2500
Noise	Very high gain: 16.1 e ± 2.4 e (~0.23 ph @ 250 eV) reduced <15 e by CMA	
	High gain: 52-82 e ± 15 e (0.75-1.18 ph @ 250 eV)	2 1500 - 0 MOO
	Medium gain: 343 e ± 73 e (~4.95 ph @ 250 eV)	
	Low gain: 3.0 ke ± 638 e (~ 43 ph @ 250 eV)	\$ 500 B 400 B 400 B
One-photon sensitivity: $P(1 0) < 10 \times 10^{-6}$	350 eV photons and above (very high gain)	
Full well (fixed-gain	Very high gain mode: ~5.75 ke ± 585 e (~83 ph @ 250 eV)	0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 1000 10000 100000 10+00 collected charge on pixel [e] collected charge on pixel [e] adaptive gain operation (Lateral Overflow)
operation)	High-gain mode: 30.5 ke ± 2 ke (~439 ph @ 250 eV)	c) noise during adaptive gain operation (Lateral Overflow)
	Medium-gain mode: 381 ke ± 17.6 ke (~55 kph @ 250 eV)	100000 20000 mgn gain high-gain noise 12500 T
		T I
	Low-gain mode: 3.56 Me ± 169 ke (~51 kph @ 250 eV)	
Adaptive-gain dynamic range	Low-gain mode: 3.56 Me ± 169 ke (~51 kph @ 250 eV) High → medium gain: 16.4 ke ± 6.1 ke (~236 ph @ 250 eV)	10000 - Poisson limit
Adaptive-gain dynamic range (lateral-overflow)	Low-gain mode: 3.56 Me ± 169 ke (~51 kph @ 250 eV) High → medium gain: 16.4 ke ± 6.1 ke (~236 ph @ 250 eV) Medium → low-gain: 165.5 ke ± 23 ke (~2.4 kph @ 250 eV)	10000 - E E E E E E E E E E E E E E E E E

JOURNAL OF SYNCHROTRON RADIATION

Marras et al. ٠

0 60 integration time [ms]

80

100

40

20

Volume 28 | Part 1 | January 2021 | Pages 131–145 | 10.11107/S1600577520013958 ٠

incoming photons (250eV)

Hybrid detectors

Sensor and readout electronics can be optimized separately

- Direct conversion in semiconductor
- ✓ Fast drifting of charge to the pixel
- ✓ Room temperature operation
- ✓ Fast highly parallelized readout
- Interconnection (bump bonding) limits the pixel pitch
- Input capacitance increases the electronic noise

Since 15 years state of the art in hard X-ray applications: diffraction, ptychography...

Resonant diffraction

V. Scagnoli, U. Staub, RESOXS endstation, SIM beamline SLS

- No radiation damage even in case of saturation
- Large dynamic range by dynamic gain switching

ErMnO3 film on NdGaO3 substrate

Resonant diffraction

V. Scagnoli, U. Staub, RESOXS endstation, SIM beamline SLS

- No radiation damage even in case of saturation
- Large dynamic range by dynamic gain switching

ErMnO3 film on NdGaO3 substrate

Soft X-ray ptychography

M. Langer, J. Raabe, A. Kleibert et al., SIM beamline SLS

Ptychography and STXM setup

No fast shutter required during acquisition

M. Langer et al. (2018) Microsc. Microanal. 24, 56.

Tube with

zone plate

Preliminary results

M. Langer, J. Raabe, A. Kleibert et al., SIM beamline SLS

Sample BiFeO₃ nanoplatelets, energy 709 eV

©M. Langer

Cross pixel calibration could still improve performance

Quantum efficiency for soft X-rays

Shallow absorption of soft X-rays

- Requires optimized entrance window technology
 - Reduce the thickness of the layers above silicon
 - Decrease the charge recombination in the silicon interface layer
 - Reduce the charge recombination in the highly doped implants

Single photon resolution at low energies

- Reduction of electronic noise
 - Noise reduced in JUNGFRAU 1.1
 from 52 e- to 34 e- rms (< 2/3)
 - Single photon resolution down to \approx 800 eV
 - Less than 10 e- noise rms required for single photon resolution at 200 eV

Cumulative energy spectrum in high gain (1000 frames all pixels)

- Segmented Low Gain Avalanche Diodes (LGADs)
 - Sensors with internal amplification
 - Increase SNR of single photons
 - Gain on the backplane to achieve 100% fill factor (iLGAD)
 - Must be combined with high QE for soft X-rays
 - First batch optimized for soft X-rays ready for testing
 - Soft X-ray single photon counters and RIXS with interpolation?

Radiation Damage

- CCD and CMOS detectors are quite radiation sensitive
 - Improves with back illumination and sensor thickness
 - Less damage at low energies
 - Can survive ca. 100-1000 Gy
 - Rad-hard design could be implemented in CMOS imagers
- The radiation sensitive structures of hybrid detectors are shielded by ca.
 300 µm of silicon
 - Can survive MGy also for hard X-rays
 - Rad hardness of LGADs needs to be studied

Large field of view

- Vacuum barrier between sensor and DAQ for vacuum compatibility
 - Density of feedthroughs
 - Movement of the detector
- Temperature control
- Tiling of modules required for larger field of view
 - -0.5-1.5 mm gaps between modules
 - More for CCDs/CMOS

- More pixels ⇒ more data
 - Fully parallel readout at full speed:
 - MÖNCH 0.3 160k ⇒2 GB/s ⇒ 170 TB/day
- Dedicated data backend

required Network
Storage
Processing
Display

	CCD	CMOS	Hybrid
Quantum efficiency			
Single photon sensitivity			
Dynamic range			\odot
Spatial resolution	\odot	\odot	(
Frame rate	\bigotimes		\odot
Area coverage			\odot
Radiation hardness	\bigotimes	(\odot

•The choice of the detector plays an important role for the success of your experiment

•Choose it wisely

•Use it properly

Thanks for listening. Questions?

